Wie programmiere ich den TI89-Titanium Taschenrechner?

Qeno

Neues Mitglied
Hallo,

ich würde gerne diese 5 aufeinander folgenden Formeln in meinen Texas Instruments TI 89 Titanium programmieren, sodass ich nur noch die gegebenen Werte eingeben muss und der Taschenrechner mir dann die Ergebnisse auswirft.

Ich kenne mich ein bisschen mit Python aus, mehr aber leider nicht. Könnt ihr mir einen Tipp geben, wie ich da ansetzten kann?

Vielen Dank im Voraus!

Viele Grüße!

 

Mat

Aktives Mitglied
Kenne mich mit TI-Basic nicht aus. Hier für Leute, die es ausprobieren wollen:


Nicht schlecht, was der so kann
 

Mat

Aktives Mitglied
Ich hab mal meinen neuen besten Freund gefragt. ;) Vielleicht hilft dir das weiter (ich habe es nicht getestet):


Serviervorschlag:
:Function BU(D, alpha)
:  BU = D*cos(alpha)
:  Return BU
:End

:Function BB(BA, BU)
:  BB = BA+BU
:  Return BB
:End

:Function DeltaPhi(PhiB, PhiA)
:  DeltaPhi = PhiB-PhiA
:  Return DeltaPhi
:End

:Function PhiAB(phiA, phiB)
:  PhiAB = 10800/(3.14159)*Ln(Tan(45+phiA/2))
:  Return PhiAB
:End

:Function LU(DeltaPhi, alpha)
:  LU = DeltaPhi*Tan(alpha)
:  Return LU
:End

:Function LB(LA, LU)
:  LB = LA+LU
:  Return LB
:End

:ClrHome
:Disp "Enter D, alpha and BA"
:Input D, alpha, BA
:Disp "BU: ", BU(D, alpha)
:Disp "BB: ", BB(BA, BU(D, alpha))
:Disp "Enter PhiB and PhiA"
:Input PhiB, PhiA
:Disp "DeltaPhi: ", DeltaPhi(PhiB, PhiA)
:Disp "Enter phiA and phiB"
:Input phiA, phiB
:Disp "PhiAB: ", PhiAB(phiA, phiB)
:Disp "Enter alpha"
:Input alpha
:Disp "LU: ", LU(DeltaPhi(PhiB, PhiA),alpha)
:Disp "Enter LA"
:Input LA
:Disp "LB: ", LB(LA, LU(DeltaPhi(PhiB, PhiA),alpha))

Mein Kumpel kommt oft nicht mit Matheformeln und Code zurecht, also ist das Ergebnis mit Vorsicht zu genießen. Außerdem ist mein Input nicht unbedingt richtig. Dieser Code zeigt dir nur, wie ein Programm zB aufgebaut sein könnte. Du musst das immer noch selbst kontrollieren und verändern, damit es für deinen Anwendungsfall passt.


Hier die Prompts und Antworten des gesamten Gesprächs, zur Nachvollziehbarkeit:

Mat:
Can you try to guess what these formulas are being used for? They all belong together. Please be aware that they might not be formally correct. You don't have to be specific if parts are unclear.

  1. \( BU = D \cdot \cos(\alpha) \)
  2. \( B_B = B_A + BU \)
  3. \( _\triangle \Phi = \Phi_B - \Phi_A \)
  4. \( \Phi_{A,B} = \frac{10800}{\Pi} \cdot lu(\tan(45+\frac{\phi_{A,B}}{2}) \)
  5. \( LU = _\triangle \Phi \cdot \tan(\alpha) \)
  6. \( L_B = L_A + LU \)

Bot:
These formulas appear to be related to some kind of geometric or trigonometric calculations.
  1. \( BU = D \cdot \cos(\alpha) \) - appears to be calculating the projection of a line segment onto a certain axis, where D is the length of the line segment and alpha is the angle between the segment and the axis.
  2. \( B_B = B_A + BU \) - appears to be adding two values together, where B_A and B_B are some kind of coordinates
  3. \( _\triangle \Phi = \Phi_B - \Phi_A \) - appears to be finding the difference between two angles, where Phi_A and Phi_B are the angles
  4. \( \Phi_{A,B} = \frac{10800}{\Pi} \cdot lu(\tan(45+\frac{\phi_{A,B}}{2}) \) - appears to be converting an angle to some kind of other unit, where LU is some kind of unit and \( phi_A,B \) are angles
  5. \( LU = _\triangle \Phi \cdot \tan(\alpha) \) - appears to be multiplying the difference between two angles with the tangent of another angle
  6. \( L_B = L_A + LU \) - appears to be adding two values together, where L_A and L_B are some kind of coordinates
It's hard to say more about these formulas without more context and information about the system they are being used in.

Mat:
How can I write a function in TI Basic that streamlines entering these calculations?

Bot:
You can write a function in TI Basic to streamline entering these calculations by creating a program that takes in the necessary inputs and returns the result of the calculation. Here's an example of how you might write such a function for the first calculation:

C-ähnlich:
:Function BU(D, alpha)
:  BU = D*cos(alpha)
:  Return BU
:End

This function takes in two inputs, D and alpha, and calculates the value of BU using the formula provided. The "Return" statement is used to output the result of the calculation.

You can create similar functions for the rest of the calculations, and then call these functions in a main program to perform the calculations.

Here's a full example of a program that you can use to calculate all the formulas:

Code:
...
code von oben
...

This program uses all the function defined above and prompts the user to input the necessary values for each calculation, and then prints the results to the screen.

It's important to keep in mind that this program is just an example and may not work correctly as is if some of the formulas are not formally correct or are missing some information. It's also important to check the limits of the input and output of the function, and if necessary, add some constraints.
ChatGPT Jan 9 Version
 
Zuletzt bearbeitet:

Qeno

Neues Mitglied
Ich hab mal meinen neuen besten Freund gefragt. ;) Vielleicht hilft dir das weiter (ich habe es nicht getestet):


Serviervorschlag:
:Function BU(D, alpha)
:  BU = D*cos(alpha)
:  Return BU
:End

:Function BB(BA, BU)
:  BB = BA+BU
:  Return BB
:End

:Function DeltaPhi(PhiB, PhiA)
:  DeltaPhi = PhiB-PhiA
:  Return DeltaPhi
:End

:Function PhiAB(phiA, phiB)
:  PhiAB = 10800/(3.14159)*Ln(Tan(45+phiA/2))
:  Return PhiAB
:End

:Function LU(DeltaPhi, alpha)
:  LU = DeltaPhi*Tan(alpha)
:  Return LU
:End

:Function LB(LA, LU)
:  LB = LA+LU
:  Return LB
:End

:ClrHome
:Disp "Enter D, alpha and BA"
:Input D, alpha, BA
:Disp "BU: ", BU(D, alpha)
:Disp "BB: ", BB(BA, BU(D, alpha))
:Disp "Enter PhiB and PhiA"
:Input PhiB, PhiA
:Disp "DeltaPhi: ", DeltaPhi(PhiB, PhiA)
:Disp "Enter phiA and phiB"
:Input phiA, phiB
:Disp "PhiAB: ", PhiAB(phiA, phiB)
:Disp "Enter alpha"
:Input alpha
:Disp "LU: ", LU(DeltaPhi(PhiB, PhiA),alpha)
:Disp "Enter LA"
:Input LA
:Disp "LB: ", LB(LA, LU(DeltaPhi(PhiB, PhiA),alpha))

Mein Kumpel kommt oft nicht mit Matheformeln und Code zurecht, also ist das Ergebnis mit Vorsicht zu genießen. Außerdem ist mein Input nicht unbedingt richtig. Dieser Code zeigt dir nur, wie ein Programm zB aufgebaut sein könnte. Du musst das immer noch selbst kontrollieren und verändern, damit es für deinen Anwendungsfall passt.


Hier die Prompts und Antworten des gesamten Gesprächs, zur Nachvollziehbarkeit:

Mat:
Can you try to guess what these formulas are being used for? They all belong together. Please be aware that they might not be formally correct. You don't have to be specific if parts are unclear.

  1. \( BU = D \cdot \cos(\alpha) \)
  2. \( B_B = B_A + BU \)
  3. \( _\triangle \Phi = \Phi_B - \Phi_A \)
  4. \( \Phi_{A,B} = \frac{10800}{\Pi} \cdot lu(\tan(45+\frac{\phi_{A,B}}{2}) \)
  5. \( LU = _\triangle \Phi \cdot \tan(\alpha) \)
  6. \( L_B = L_A + LU \)

Bot:
These formulas appear to be related to some kind of geometric or trigonometric calculations.
  1. \( BU = D \cdot \cos(\alpha) \) - appears to be calculating the projection of a line segment onto a certain axis, where D is the length of the line segment and alpha is the angle between the segment and the axis.
  2. \( B_B = B_A + BU \) - appears to be adding two values together, where B_A and B_B are some kind of coordinates
  3. \( _\triangle \Phi = \Phi_B - \Phi_A \) - appears to be finding the difference between two angles, where Phi_A and Phi_B are the angles
  4. \( \Phi_{A,B} = \frac{10800}{\Pi} \cdot lu(\tan(45+\frac{\phi_{A,B}}{2}) \) - appears to be converting an angle to some kind of other unit, where LU is some kind of unit and \( phi_A,B \) are angles
  5. \( LU = _\triangle \Phi \cdot \tan(\alpha) \) - appears to be multiplying the difference between two angles with the tangent of another angle
  6. \( L_B = L_A + LU \) - appears to be adding two values together, where L_A and L_B are some kind of coordinates
It's hard to say more about these formulas without more context and information about the system they are being used in.

Mat:
How can I write a function in TI Basic that streamlines entering these calculations?

Bot:
You can write a function in TI Basic to streamline entering these calculations by creating a program that takes in the necessary inputs and returns the result of the calculation. Here's an example of how you might write such a function for the first calculation:

C-ähnlich:
:Function BU(D, alpha)
:  BU = D*cos(alpha)
:  Return BU
:End

This function takes in two inputs, D and alpha, and calculates the value of BU using the formula provided. The "Return" statement is used to output the result of the calculation.

You can create similar functions for the rest of the calculations, and then call these functions in a main program to perform the calculations.

Here's a full example of a program that you can use to calculate all the formulas:

Code:
...
code von oben
...

This program uses all the function defined above and prompts the user to input the necessary values for each calculation, and then prints the results to the screen.

It's important to keep in mind that this program is just an example and may not work correctly as is if some of the formulas are not formally correct or are missing some information. It's also important to check the limits of the input and output of the function, and if necessary, add some constraints.
ChatGPT Jan 9 Version
Vielen Dank!
 
Oben Unten